Neonatal E. coli infection causes neuro-behavioral deficits associated with hypomyelination and neuronal sequestration of iron.

نویسندگان

  • Jacqueline C Lieblein-Boff
  • Daniel B McKim
  • Daniel T Shea
  • Ping Wei
  • Zhen Deng
  • Caroline Sawicki
  • Ning Quan
  • Staci D Bilbo
  • Michael T Bailey
  • Dana M McTigue
  • Jonathan P Godbout
چکیده

Recent evidence indicates that inflammatory insults in neonates significantly influenced white matter development and caused behavioral deficits that manifest in young adulthood. The mechanisms underlying these developmental and behavioral complications, however, are not well understood. We hypothesize that acute brain inflammation caused by neonatal infection reduces the bioavailability of iron required for oligodendrocyte maturation and white matter development. Here, we confirm that peripheral Escherichia coli infection in neonates at postnatal day 3 (P3) caused acute brain inflammation that was resolved within 72 h. Nonetheless, transient early life infection (ELI) profoundly influenced behavior, white matter development, and iron homeostasis in the brain. For instance, mice exposed to E. coli as neonates had increased locomotor activity and impaired motor coordination as juveniles (P35) and young adults (P60). In addition, these behavioral deficits were associated with marked hypomyelination and a reduction of oligodendrocytes in subcortical white matter and motor cortex. Moreover, ELI altered transcripts related to cellular sequestration of iron in the brain including hepcidin, ferroportin, and L-ferritin. For example, ELI increased hepcidin mRNA and decreased ferroportin mRNA and protein in the brain at P4, which preceded increased L-ferritin mRNA at P12. Consistent with the mRNA results, L-ferritin protein was robustly increased at P12 specifically in neurons of E. coli infected mice. We interpret these data to indicate that neonatal infection causes significant neuronal sequestration of iron at a time point before myelination. Together, these data indicate a possible role for aberrant neuronal iron storage in neonatal infection-induced disturbances in myelination and behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atrazine-induced Hippocampal Degeneration and Behavioral Deficits in Wistar Rats: Mitigative role of avocado oil

Background: Glutamate is essential to learning and memory as an excitatory neurotransmitter. This study evaluated the atrazine effect on the hippocampus and examined the mitigative role of avocado oil against the neuronal degeneration and behavioral deficits in Wistar rats. Methods: Fifty adult male Wistar rats were divided into four groups of ten. Group 1 (controls) received 0.5 ml distilled ...

متن کامل

The effect of vitamin E and prazocin on memory retention in adult male rats

Both aging and age-associated neurodegenerative diseases are related with various degrees of behavioral impairments, and among the prime candidates responsible for producing the neuronal changes mediating these behavioral deficits, appear to be free radicals and the oxidative agents which they generate. Free radicals such as vit. E may be important factors in maintaining neuronal integrity and ...

متن کامل

The effect of vitamin E and prazocin on memory retention in adult male rats

Both aging and age-associated neurodegenerative diseases are related with various degrees of behavioral impairments, and among the prime candidates responsible for producing the neuronal changes mediating these behavioral deficits, appear to be free radicals and the oxidative agents which they generate. Free radicals such as vit. E may be important factors in maintaining neuronal integrity and ...

متن کامل

Soluble Expression of Recombinant Nerve Growth Factor in Cytoplasm of Escherichia coli

Background: Pivotal roles of Nerve growth factor (NGF) in the development and survival of both neuronal and non-neuronal cells indicate its potential for the treatment of neurodegenerative diseases. However, investigation of NGF deficits in different diseases requires the availability of properly folded human b-NGF. In previous studies bacterial expression of hNGF demonstrated the feasibility o...

متن کامل

Neuronal Cell Reconstruction with Umbilical Cord Blood Cells in the Brain Hypoxia-Ischemia

Background: Brain hypoxia-ischemia is a human neonatal injury that is considered a candidate for stem cell therapy. Methods: The possible therapeutic potential of human umbilical cord blood (HUCB) stem cells was evaluated in 14-day-old rats subjected to the right common carotid occlusion, a model of neonatal brain hypoxia-ischemia. Seven days after hypoxia-ischemia, rats received either saline ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 41  شماره 

صفحات  -

تاریخ انتشار 2013